A Short Proof of Rost Nilpotence via Refined Correspondences

نویسندگان

  • PATRICK BROSNAN
  • V. Chernousov
  • S. Gille
چکیده

I generalize the standard notion of the composition g ◦ f of correspondences f : X → Y and g : Y → Z to the case that X and Z are arbitrary varieties but Y is smooth and projective. Using this notion, I give a short self-contained proof of Rost’s “nilpotence theorem” and a generalization of one important result used by Rost in his proof of the nilpotence theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motivic construction of cohomological invariants

The norm varieties and the varieties with special correspondences play a major role in the proof of the Bloch-Kato Conjecture by M. Rost and V. Voevodsky. In the present paper we show that a variety which possesses a special correspondence is a norm variety. As an unexpected application we give a positive answer to a problem of J.-P. Serre about groups of type E8 over Q. Apart from this we incl...

متن کامل

A Note on The Local Nilpotence of 4-Engel Groups

Recently Havas and Vaughan-Lee proved that 4-Engel groups are locally nilpotent. Their proof relies on the fact that a certain 4-Engel group T is nilpotent and this they prove using a computer and the Knuth-Bendix algorithm. In this paper we give a short hand-proof of the nilpotency of T .

متن کامل

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

متن کامل

The Nilpotence Height of P

The method of Walker and Wood is used to completely determine the nilpotence height of the elements P s t in the Steenrod algebra at the prime 2. In particular, it is shown that (P s t ) 2bs/tc+2 = 0 for all s ≥ 0, t ≥ 1. In addition, several interesting relations in A are developed in order to carry out the proof.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003